Mapping class groups Problem sheet 1

Lent 2021

- 1. Give an example of a surface S of finite type and a self-diffeomorphism ϕ of S which is homotopic to id_S but not isotopic to id_S .
- 2. Let D^2 be the closed unit disc, and let $D^2_* = D^2 \smallsetminus \{0\}$. Prove that every self-homeomorphism of D^2_* extends to a self-homeomorphism of D^2 that fixes 0.
- 3. Let $A \in SL_2(\mathbb{R})$ be a non-identity matrix, and let ϕ_A be the corresponding element of $PSL_2(\mathbb{R}) \equiv \text{Isom}^+(\mathbb{H}^2)$. Prove that:
 - (i) if $|\operatorname{tr} A| > 2$ then ϕ_A is hyperbolic;
 - (ii) if $|\operatorname{tr} A| = 2$ then ϕ_A is parabolic;
 - (iii) if $|\operatorname{tr} A| < 2$ then ϕ_A is elliptic.

Here, as usual, $\operatorname{tr} A$ denotes the *trace* of A.

- 4. (a) Geodesic lines in \mathbb{H}^2 that do not meet in $\overline{\mathbb{H}}^2$ are called *ultraparallel*. Prove that two ultraparallel geodesic lines γ_1, γ_2 are joined by a unique common perpendicular.
 - (b) Prove that the endpoints of this perpendicular are the unique points that achieve the minimal distance between γ_1 and γ_2 .
 - (c) Let ϕ be a hyperbolic isometry of \mathbb{H}^2 , with translation length τ . Prove that if x is not on the axis of \mathbb{H}^2 then $d(x, \phi(x)) > \tau$.

- 5. Recall that $S_{0,n,0}$ is the sphere with *n* punctures, and $S_{0,0,b}$ is the sphere with *b* boundary components.
 - (a) Sketch the construction of a hyperbolic structure $S_{0,n,0}$ for suitable n.
 - (b) Sketch the construction of a hyperbolic structure on $S_{0,0,b}$ for suitable b.
- 6. Let S be a hyperbolic surface, and let α be a closed curve on S which is homotopic into a puncture. A *horocycle* is a circle in the hyperbolic plane (in either the upper half-plane or disc model) which meets the boundary in exactly one point. Prove that, after a homotopy, α has a lift $\tilde{\alpha}$ which is a horocycle.
- 7. Let S be a hyperbolic surface and α a closed curve that is not homotopic to a point. Prove that the centraliser $C_{\pi_1 S}(\alpha)$ is cyclic and that the centre $Z(\pi_1 S)$ is trivial.
- 8. Let α be a closed curve on the 2-torus T^2 . Prove that α is homotopic to a simple closed curve if and only if α represents a primitive element of $\pi_1 T^2$.
- 9. Recall that the fundamental group of the 2-torus T^2 is isomorphic to \mathbb{Z}^2 . Suppose the simple closed curve α corresponds to (a, b) and β corresponds to (c, d). Prove that $i(\alpha, \beta) = |ad bc|$.
- 10. Prove the Euclidean case of the bigon criterion. That is, let S be a surface of finite type with $\chi(S) = 0$ and let α, β be transverse, essential, simple closed curves on S. Prove that if α and β are not in minimal position then they form a bigon.
- 11. Prove that every surface S has a collection of essential closed curves and proper arcs that satisfy the hypotheses of the Alexander method: that is, there are no bigons, no annuli and no triangles.
- 12. (a) Exhibit a homotopy equivalence between the 3-punctured sphere $S_{0,3,0}$ and the punctured torus $S_{1,1,0}$.
 - (b) Show that there are self-homotopy-equivalences of $S_{0,3}$ that are not homotopic to homeomorphisms.