Mapping class groups Problem sheet 1

Lent 2021

1. Give an example of a surface S of finite type and a self-diffeomorphism ϕ of S which is homotopic to id_{S} but not isotopic to id_{S}.
2. Let D^{2} be the closed unit disc, and let $D_{*}^{2}=D^{2} \backslash\{0\}$. Prove that every self-homeomorphism of D_{*}^{2} extends to a self-homeomorphism of D^{2} that fixes 0 .
3. Let $A \in S L_{2}(\mathbb{R})$ be a non-identity matrix, and let ϕ_{A} be the corresponding element of $P S L_{2}(\mathbb{R}) \equiv \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$. Prove that:
(i) if $|\operatorname{tr} A|>2$ then ϕ_{A} is hyperbolic;
(ii) if $|\operatorname{tr} A|=2$ then ϕ_{A} is parabolic;
(iii) if $|\operatorname{tr} A|<2$ then ϕ_{A} is elliptic.

Here, as usual, $\operatorname{tr} A$ denotes the trace of A.
4. (a) Geodesic lines in \mathbb{H}^{2} that do not meet in $\overline{\mathbb{H}}^{2}$ are called ultraparallel. Prove that two ultraparallel geodesic lines γ_{1}, γ_{2} are joined by a unique common perpendicular.
(b) Prove that the endpoints of this perpendicular are the unique points that achieve the minimal distance between γ_{1} and γ_{2}.
(c) Let ϕ be a hyperbolic isometry of \mathbb{H}^{2}, with translation length τ. Prove that if x is not on the axis of \mathbb{H}^{2} then $d(x, \phi(x))>\tau$.
5. Recall that $S_{0, n, 0}$ is the sphere with n punctures, and $S_{0,0, b}$ is the sphere with b boundary components.
(a) Sketch the construction of a hyperbolic structure $S_{0, n, 0}$ for suitable n.
(b) Sketch the construction of a hyperbolic structure on $S_{0,0, b}$ for suitable b.
6. Let S be a hyperbolic surface, and let α be a closed curve on S which is homotopic into a puncture. A horocycle is a circle in the hyperbolic plane (in either the upper half-plane or disc model) which meets the boundary in exactly one point. Prove that, after a homotopy, α has a lift $\tilde{\alpha}$ which is a horocycle.
7. Let S be a hyperbolic surface and α a closed curve that is not homotopic to a point. Prove that the centraliser $C_{\pi_{1} S}(\alpha)$ is cyclic and that the centre $Z\left(\pi_{1} S\right)$ is trivial.
8. Let α be a closed curve on the 2 -torus T^{2}. Prove that α is homotopic to a simple closed curve if and only if α represents a primitive element of $\pi_{1} T^{2}$.
9. Recall that the fundamental group of the 2 -torus T^{2} is isomorphic to \mathbb{Z}^{2}. Suppose the simple closed curve α corresponds to (a, b) and β corresponds to (c, d). Prove that $i(\alpha, \beta)=|a d-b c|$.
10. Prove the Euclidean case of the bigon criterion. That is, let S be a surface of finite type with $\chi(S)=0$ and let α, β be transverse, essential, simple closed curves on S. Prove that if α and β are not in minimal position then they form a bigon.
11. Prove that every surface S has a collection of essential closed curves and proper arcs that satisfy the hypotheses of the Alexander method: that is, there are no bigons, no annuli and no triangles.
12. (a) Exhibit a homotopy equivalence between the 3-punctured sphere $S_{0,3,0}$ and the punctured torus $S_{1,1,0}$.
(b) Show that there are self-homotopy-equivalences of $S_{0,3}$ that are not homotopic to homeomorphisms.

